scarlet.display¶
- class scarlet.display.AsinhPercentileNorm(img, percentiles=[1, 99])[source]¶
Bases:
AsinhMapping
Methods
intensity
(image_r, image_g, image_b)Return the total intensity from the red, blue, and green intensities.
make_rgb_image
(image_r, image_g, image_b)Convert 3 arrays, image_r, image_g, and image_b into an 8-bit RGB image.
map_intensity_to_uint8
(I)Return an array which, when multiplied by an image, returns that image mapped to the range of a uint8, [0, 255] (but not converted to uint8).
- class scarlet.display.LinearPercentileNorm(img, percentiles=[1, 99])[source]¶
Bases:
LinearMapping
Methods
intensity
(image_r, image_g, image_b)Return the total intensity from the red, blue, and green intensities.
make_rgb_image
(image_r, image_g, image_b)Convert 3 arrays, image_r, image_g, and image_b into an 8-bit RGB image.
map_intensity_to_uint8
(I)Return an array which, when multiplied by an image, returns that image mapped to the range of a uint8, [0, 255] (but not converted to uint8).
- scarlet.display.channels_to_rgb(channels)[source]¶
Get the linear mapping of multiple channels to RGB channels The mapping created here assumes the the channels are ordered in wavelength direction, starting with the shortest wavelength. The mapping seeks to produce a relatively even weights for across all channels. It does not consider e.g. signal-to-noise variations across channels or human perception. Parameters ———- channels: int in range(0,7)
Number of channels
Returns¶
array (3, channels) to map onto RGB
- scarlet.display.img_to_3channel(img, channel_map=None, fill_value=0)[source]¶
Convert multi-band image cube into 3 RGB channels Parameters ———- img: array_like
This should be an array with dimensions (channels, height, width).
- channel_map: array_like
Linear mapping with dimensions (3, channels)
- fill_value: float, default=`0`
Value to use for any masked pixels.
Returns¶
RGB: numpy array with dtype float
- scarlet.display.img_to_rgb(img, channel_map=None, fill_value=0, norm=None, mask=None)[source]¶
Convert images to normalized RGB. If normalized values are outside of the range [0..255], they will be truncated such as to preserve the corresponding color. Parameters ———- img: array_like
This should be an array with dimensions (channels, height, width).
- channel_map: array_like
Linear mapping with dimensions (3, channels)
- fill_value: float, default=`0`
Value to use for any masked pixels.
- norm: scarlet.display.Norm, default None
Norm to use for mapping in the allowed range [0..255]. If norm=None, scarlet.display.LinearPercentileNorm will be used.
- mask: array_like
A [0,1] binary mask to apply over the top of the image, where pixels with mask==1 are masked out.
Returns¶
rgb: numpy array with dimensions (3, height, width) and dtype uint8
- scarlet.display.show_observation(observation, norm=None, channel_map=None, sky_coords=None, show_psf=False, add_labels=True, figsize=None)[source]¶
Plot observation in standardized form.
- scarlet.display.show_scene(sources, observation=None, norm=None, channel_map=None, show_model=True, show_observed=False, show_rendered=False, show_residual=False, add_labels=True, add_boxes=False, figsize=None, linear=True)[source]¶
Plot all sources to recreate the scence. The functions provides a fast way of evaluating the quality of the entire model, i.e. the combination of all scences that seek to fit the observation. Parameters ———- sources: list of source models observation: ~scarlet.Observation norm: norm to compress image intensity to the range [0,255] channel_map: array_like
Linear mapping with dimensions (3, channels)
- show_model: bool
Whether the model is shown in the model frame
- show_observed: bool
Whether the observation is shown
- show_rendered: bool
Whether the model, rendered to match the observation, is shown
- show_residual: bool
Whether the residuals between rendered model and observation is shown
- add_label: bool
Whether each source is labeled with its numerical index in the source list
- add_boxes: bool
Whether each source box is shown
figsize: matplotlib figsize argument linear: bool
Whether or not to display the scene in a single line (True) or on multiple lines (False).
Returns¶
matplotlib figure
- scarlet.display.show_sources(sources, observation=None, norm=None, channel_map=None, show_model=True, show_observed=False, show_rendered=False, show_spectrum=True, figsize=None, model_mask=None, add_markers=True, add_boxes=False)[source]¶
Plot each source individually. The functions provides an more detailed inspection of every source in the list. Parameters ———- sources: list of source models observation: ~scarlet.Observation norm: norm to compress image intensity to the range [0,255] channel_map: array_like
Linear mapping with dimensions (3, channels)
- show_model: bool
Whether the model is shown in the model frame
- show_observed: bool
Whether the observation is shown
- show_rendered: bool
Whether the model, rendered to match the observation, is shown
- show_spectrum: bool
Whether source specturm is shown. For multi-component sources, spectra are shown separately.
figsize: matplotlib figsize argument model_mask: array
Mask used to hide pixels in the model only.
- add_markers: bool
Whether or not to mark the centers of the sources with their source number.
- add_boxes: bool
Whether source boxes are shown
Returns¶
matplotlib figure