scarlet.observation¶
- class scarlet.observation.Observation(data, channels, psf=None, weights=None, wcs=None, padding=10)[source]¶
Bases:
Frame
Data and metadata for a single set of observations
- Attributes:
- data: array
3D data cube (channels, Ny, Nx) of the image in each band.
- weights: array or tensor
Weight for each pixel in data. If a set of masks exists for the observations then then any masked pixels should have their weight set to zero.
Methods
convert_pixel_to
(target[, pixel])Converts pixel coordinates from this frame to target Frame
from_observations
(observations[, model_psf, ...])Generates a suitable model frame for a set of observations.
get_log_likelihood
(model, *parameters[, ...])Computes the log-Likelihood of a given model wrt to the observation
get_pixel
(sky_coord)Get the pixel coordinate from a world coordinate
get_sky_coord
(pixel)Get the sky coordinate from a pixel coordinate
match
(model_frame[, renderer])Match the frame of the model to the frame of this observation.
render
(model, *parameters)Convolve a model to the observation frame
- get_log_likelihood(model, *parameters, noise_factor=0)[source]¶
Computes the log-Likelihood of a given model wrt to the observation
- Parameters:
- model: array
The model from Blend
- parameters: tuple of optimization parameters
- Returns:
- logL: float
- property log_norm¶
- match(model_frame, renderer=None)[source]¶
Match the frame of the model to the frame of this observation.
The method sets up the mappings in spectral and spatial coordinates, which includes a spatial selection, computing PSF difference kernels and filter transformations.
Parameters¶
- model_frame: a scarlet.Frame instance
The frame of Blend to match
- renderer: a scarlet.Renderer instance
The transformation from model to observation
- Returns:
- None
- property noise_rms¶
- property parameters¶