scarlet.observation

class scarlet.observation.Observation(data, channels, psf=None, weights=None, wcs=None, padding=10)[source]

Bases: Frame

Data and metadata for a single set of observations

Attributes:
data: array

3D data cube (channels, Ny, Nx) of the image in each band.

weights: array or tensor

Weight for each pixel in data. If a set of masks exists for the observations then then any masked pixels should have their weight set to zero.

Methods

convert_pixel_to(target[, pixel])

Converts pixel coordinates from this frame to target Frame

from_observations(observations[, model_psf, ...])

Generates a suitable model frame for a set of observations.

get_log_likelihood(model, *parameters[, ...])

Computes the log-Likelihood of a given model wrt to the observation

get_pixel(sky_coord)

Get the pixel coordinate from a world coordinate

get_sky_coord(pixel)

Get the sky coordinate from a pixel coordinate

match(model_frame[, renderer])

Match the frame of the model to the frame of this observation.

render(model, *parameters)

Convolve a model to the observation frame

get_log_likelihood(model, *parameters, noise_factor=0)[source]

Computes the log-Likelihood of a given model wrt to the observation

Parameters:
model: array

The model from Blend

parameters: tuple of optimization parameters
Returns:
logL: float
property log_norm
match(model_frame, renderer=None)[source]

Match the frame of the model to the frame of this observation.

The method sets up the mappings in spectral and spatial coordinates, which includes a spatial selection, computing PSF difference kernels and filter transformations.

Parameters

model_frame: a scarlet.Frame instance

The frame of Blend to match

renderer: a scarlet.Renderer instance

The transformation from model to observation

Returns:
None
property noise_rms
property parameters
render(model, *parameters)[source]

Convolve a model to the observation frame

Parameters:
model: array

The hyperspectral model

parameters: tuple of optimization parameters
Returns:
model_: array

model mapped into the observation frame